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Discrimination and ordering of chemical structures 
by the number of walks* 
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The use of  the number  of  walks for the discrimination of graphs representing 
chemical structures is discussed. A highly selective graph-theoretical index 
based on the number  of  walks is defined. The index values were calculated 
for 661 acyclic and 376 cyclic structures. The selectivity of  the new index is 
compared to that of  some of the most selective previously defined indexes. 
The ordering of structures induced by the value of  the index is also considered. 
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Introduction 

Graph theory has an important role in the definition and development of  various 
numerical and alphanumerical descriptors of chemical structure used in 
documentation,  structure - property correlation, and for other purposes [1]. A 
host of  different graph invariants can be used for the discrimination and /o r  
characterization of graphs representing chemical structures [2]. 

The number  of  walks is a graph invariant used in the past in many different ways 
for the characterizaLtion of  molecular graphs. In this paper  we consider as 
molecular graphs only graphs representing saturated hydrocarbon molecules 
depleted of hydrogen atoms, i.e. connected undirected graphs with vertex degree 
between 1 and 4. The', term "walk"  is used in its broadest sense [3] as representing 

* Presented in part at the 7th International Conference on Computers in Chemical Research and 
Education, held in Garmisch-Partenkirchen, Germany, June 10-14, 1985 
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an alternating sequence of vertexes and edges beginning and ending with vertexes. 
Several attempts to characterize molecular graphs using smaller subgroups of all 
possible walks have been made. Let us cite as examples "self returning walks" 
(or closed walks) [4, 5], "unusual random walks" [6], and "self avoiding walks" 
(or paths) [7-9]. Still another example of the use of the number of walks can be 
found in the Chemical Abstracts Registry File, the largest existing structural data 
file (over 7 million structures in 1985 [1]). The canonical connection tables in 
this file are derived via Morgan's algorithm [10]. This algorithm is used for the 
canonical labelling of vertexes by means of their extended connectivities. The 
chemical community uses extended connectivity for the discrimination of 
chemical structures through CAS Online and related systems, taking advantage 
of the fact that the extended connectivity of order _/of a given vertex is identical 
to the number of walks of length j, starting from this vertex, as we demonstrated 
in a previous paper [11]. 

In this paper we propose a new numerical descriptor of chemical structure based 
only on the number of walks as the basic graph invariant. Its structural selectivity 
is equal to or better than that of the most discriminating descriptors defined until 
n o w .  

Definition of the index 

In the formulation of any numerical descriptor of chemical structure two steps 
can usually be distinguished. In the first step a graph invariant, characterizing 
selected structural features by its numerical value, is chosen. The second step 
consists in the choice of an algorithm for the transformation (i.e. compression) 
of information, obtained in the first step, into a single numerical value, called 
graph theoretical or sometimes topological index. This index can be used for 
characterization of a given molecular graph or at least for its discrimination from 
other nonisomorphic graphs. 

As our choice of graph invariant used for numerical characterization of molecular 
graphs was the number of walks, we considered and compared the discriminating 
power of walks of different lengths: for each vertex in test structures the number 
of all walks up to the length N (N being the number of graph vertexes in all 
further text), and of the walks of length N only, were enumerated. 

After having obtained the numerical value characterizing each and every vertex 
we proceeded to the choice of the transformation algorithm. One of the 
possibilities used for the definition of several indexes [12, 13] is a straightforward 
summation of numerical values, attributed to individual vertexes, over all vertexes. 
Such a simple method of numerical transformation causes considerable loss of 
information and hence results in indexes of low structural selectivity. For indexes 
of high discriminating power other algorithms must be employed. 

Both most selective graph-theoretical indexes defined until now [13], namely 
Balaban's distance based index J [14] and RandiCs molecular ID (15), implement 
the identical transformation algorithm. The molecular ID has the unsurpassed 
structural selectivity having no duplicate values in all alkane isomers up to 
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structures with 16 carbon atoms and only two nonisomorphic structures with the 
same index value in C-15 and C-16 isomers [18]. 

Actually, this transformation algorithm was first used by Randi6 in the definition 
of the connectivity index 1X [16]. From the aspect of structural selectivity this 
index was the best numerical structural descriptor ten years ago and even today 
it is not yet surpassed from the aspect of structure-property correlation perform- 
ance [1, 12, 17]. 

The general form of Randir's algorithm, used in all above mentioned indexes, 
is the following: 

Index value = IE (Ii" ~)-1/2 (1) 
edge 

where Ii a n d / j  stand for the selected invariant values of adjacent vertexes j and 
_j respectively. The summation is done over all pairs of adjacent vertexes, i.e. 
over all edges in the graph. 

In the graph-theoretical indexes mentioned above (Eq. (1)) the selected invariants 
were vertex degree for 1X (16), averaged distance sum for J [14], and again the 
vertex degree (used in the calculation of weighted path numbers) for molecular 
ID [15]. 

The graph invariant, used in the present work, is the number of walks. Individual 
graph vertexes are characterized by its value and Randir's formula is employed 
subsequently to obtain a numerical value characterizing the graph as a whole. 

Generation of index values 

For the testing of the new index, the calculation of index values for a large 
number of structures was carried out using a program developed for automatic 
generation of numerical descriptors and described in detail elsewhere [11, 19]. 
The calculation of various descriptors is based on the adjacency matrix A of the 
graph, representing: a given chemical structure, and higher powers of _A, i.e. 
_A 2, _A3,...,_A N. There are many graph-theoretical characteristics known to be 
deducible from these powers _A k (3, 20), the number of walks among them. The 
value of element (A_kg)q of the _kth power of adjacency matrix A is equal to the 
number of all possible walks of length _k, starting from vertex _/ and ending in 

_ A k vertex j. Thus the sum of these elements ( _ ) 0  over all values o f j  (i.e. the sum 
of the _/th row) gives the number of all possible walks of length k from vertex j 
to all other vertexes in the graph - and this is just the invariant needed for the 
calculation of the index. 

In this manner the number of all walks of length 1 to N (NW for total Number 
of Walks in further text) and the number of walks of length N only (LW for 
Longest considered Walk in further text) were calculated for each vertex in a 
considerable number of structures, Employing the following two formulas 

I ( N W )  = E (NW~. NWj) -1/2 (2) 
adj- i , j  
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w h e r e  

N N 

N W ~ = E  E k (_A)o 
k = l j = l  

I ( t W ) =  E (LWi" Z W j )  -1/2 
adj .  i , j  

w h e r e  

(3) 

N 
LW, E N = (_A)0 

j = l  

t h e  i n d e x  v a l u e s  w e r e  c a l c u l a t e d  f o r  a l l  t e s t  s t r u c t u r e s .  I n  e x a m p l e ,  t h e  c a l c u l a t i o n  

o f  i n d e x  v a l u e s  f o r  3 ,3  d i m e t h y l  h e x a n e ,  u s i n g  E q .  3,  i s  g i v e n  i n  e x t e n s o  i n  F i g .  

1. 

1 

5 

7 

Power 1 
1 2 3 4 

1 0 1 0 0 
2 1 0 1 0 
3 0 1 0 1 
4 0 0 1 0 
5 0 0 1 0 
6 0 0 1 0 
7 0 0 0 0 
8 0 0 0 0 

Power 2 
1 2 3 

1 1 0 1 
2 0 2 0 
3 1 0 4 
4 0 1 0 
5 0 1 0 
6 0 1 0 
7 0 0 1 
8 0 0 0 

5 6 7 8 Sum a(i,j) 
( j  = 1 . . . .  8) 

0 0 0 0 1 
0 0 0 0 2 
1 1 0 0 4 
0 0 0 0 1 
0 0 0 0 1 
0 0 1 0 2 
0 1 0 1 2 
0 0 1 0 1 

4 5 6 7 8 Sum a(i,j) 
( j  = 1 . . . .  8) 

0 0 0 0 0 2 
1 1 1 0 0 5 
0 0 0 1 0 6 
1 1 1 0 0 4 
1 1 1 0 0 4 
1 1 2 0 1 6 
0 0 0 2 0 3 
0 0 1 0 1 2 

Fig. 1. Calculation of  index I(LW) for 3, 3 dimethyl hexane 
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Power 7 
1 2 3 4 5 6 

1 0 30 0 23 23 30 
2 30 0 106 0 0 0 
3 0 106 0 83 83 113 
4 23 0 83 0 0 0 
5 23 0 83 0 0 0 
6 30 0 113 0 0 0 
7 0 37 0 30 30 46 
8 7 0 30 0 0 0 

Power 8 

7 8 Sum a (~ j )  
( j  = 1 . . . .  8)  

0 7 113 
37 0 173 

0 30 415 
30 0 136 
30 0 136 
46 0 189 

0 16 159 
16 0 53 

1 2 3 4 5 6 7 8 Sum a(~ j )  
(j= 1 . . . .  8) 

1 30 0 106 0 0 0 37 0 173 
2 0 136 0 106 106 143 0 37 528 
3 106 0 385 0 0 0 143 0 634 
4 0 106 0 83 83 113 0 30 415 
5 0 106 0 83 83 113 0 30 415 
6 0 143 0 113 113 159 0 46 574 
7 37 0 143 0 0 0 62 0 242 
8 0 37 0 30 30 46 0 16 159 

I ( L W )  = ( L W  1 x LW2)-~/Z +(LW2 x LW3)-I/2 +(LW3 x LWa) -w2 

+ ( L W  3 x LW5)-1/2+ ( L W  3 • LW6)- l /2+ ( L W  6 • LWT) -1/2 

+ (LW7 x LWs) -1/~ 

I ( L W )  = (173 x 528)-1/2+ (528 x 634) q /2+ (634 x 415) -1/2 

+ (634 x 415)-I/2 + (634 x 574) -~/2 + (574 x 242) -1/2 

+ (242 x 159) -2/2 = 0.018374869 

Fig. 1. (cont.) 
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The test data set of structures consisted of  661 trees (all alkane isomers from 
butane to dodecane) and 376 graphs containing cycles (all mono- and bicyclic 
structures with 4-8 vertexes [21]). The structural discriminating power of the 
new index was examined and compared to that of some other highly selective 
indexes�9 The ordering of structures according to their index value was scrutinized 
also. 

D i s c u s s i o n  

At the initial stage of  the formulation of  the new index, two different graph 
invariants were considered, namely N W  and L W  (see above). It is well known 
that the discrimination of nonequivalent vertexes by the extended connectivity 
(or the number of  walks, since these two invariants are closely related) may not 
be successful, and also that the number of classes of  nonequivalent vertexes in 
a graph may oscillatLe during the iterative calculation of  extended connectivity 
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L = I  

L = 2  / 

/ NW(1)  = 1 
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2 

l 4 

NW(1)  = 3 

L = 3  

L = 4  

/ 

i 

) / ~ ,  

A, 

NW(1)  = 4 

N w ( 1 )  = a0 

L--5  

Fig. 2. All possible walks of  length 1 to 5, starting in vertex No. 1 of  the graph representing 2-methyl 
butane 
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[10, 22, 23]. Because of  this, the number  of  walks of  length N -  1, N - 2 ,  etc. 
might in some cases discriminate nonequivalent vertexes better than the number  
of  walks of  length N does. Applying the above argument it was expected that, 
in general, the index based on NW would bear more information about the graph 
than the one based on LW and, consequently, would be more selective. This 
conjecture proved to be false since both indexes discriminated all 1037 test 
structures equally well. 

The reason why the mentioned conclusion about the comparative selectivity of  
the two indexes was found to be erroneous becomes evident from the close 
inspection of Fig. 2. In this figure are represented all possible walks of  length 
from 1 to 5, starting in vertex 1. They are shown schematically as multigraphs 
superimposed on the molecular graph of 2-methyl butane. It is evident that each 
of the multigraphs in family L(i) is a subgraph of at least one multigraph in 
family L(i+ 1) and hence all information on graphs in family L(i) is inherent in 
family L(i  + 1). 

Since both indexe!~ I(NW) and I(LW) were found to be equally selective, the 
enumeration of  all walks up to the length N was discarded and it was decided 
to retain only the number  of  walks of  length N as the basic invariant. 

For trees the index I(LW) was found to be totally selective since the test on 661 
nonisomorphic graphs resulted in 661 different index values. A comparison of 
structural selectivity of  4 indexes (the three indexes mentioned above and the 
new index I(LW)) is given in Table 1. Because in lower alkane structures (with 
number  Of carbon atoms equal or less than 8) all four indexes are totally selective, 
the data on their selectivity for these structures are not included in the table. 

On the other hand, none of the three indexes, shown in Table 2, was totally 
selective in the case of  cyclic graphs. While index I(LW) had no degenerated 
values for the tested acyclic and monocyclic structures, 7 pairs of  isocodal bicyclic 
graphs (i.e. two nonisomorphic graphs having the same index value) were found 
among 376 tested cyclic structures. The 7 pairs of  graphs with degenerated I(LW) 
values are shown in Fig. 3. Even if the number  of  isocodal pairs of  graphs is 
small, it is sufficient to generalize the rule to predict the type of  structures that 
will have equal index values. Some of the predicted isocodal graph pairs with 

Table 1. Structural selectivity a of some graph theoretical indexes in alkane series 

Alkane Nonane Decane Undecane Dodecane 
~ ( s t r . )  35 75 159 355 

Index ~ Number of different index values 

1X 31 55 92 179 
J 35 75 159 349 
ID 35 75 159 355 
I(LW) 35 75 159 355 

a All index values were calculated to 16 decimal places since the usually reported precision of 4 
decimal places may lead to wrong conclusions on selectivity [13, 15] 
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Table 2. Structural selectivity of some a graph theoretical indexes for all mono- 
and bicyclic graphs with 4 to 8 vertexes 

N(vert.) 4 5 6 7 8 
~N(s t r . )  3 10 29 84 250 

Index ~ Number of different index values 
i 

1X 3 10 24 60 144 
I(LW) 3 10 28 83 245 
J 3 10 29 84 248 

M. Razinger 

a We have not calculated the selectivity of ID on the above structural set but 
the literature data [15] indicate its total selectivity for all monocyclic graphs 
with 6 and 7 vertexes, selected monocyclic graphs with 8 vertexes, and some 
other cyclic structures 

the number  of  vertexes greater than 8 (hence these structures were not present 
in the test structural data bank) are shown in Fig. 3. 

The general form of bicyclic structures having the same I(LW) value is shown 
in Fig. 4. The structures of  type A correspond to nonseparable graphs (blocks) 
if they are not substituted (i.e. if all vertexes are members of  at least one cycle). 
The matching isocodal structures of  type B have the same number  of  bridges as 
the A type structures have common edges in the two cycles. Of  course, the term 
"bridge" is understood in the graph-theoretical [3] and not in chemical meaning 
of the word, i.e. a bridge being an edge whose removal causes the disconnection 
of the graph. 

In addition to the unsubstituted structures in Fig. 4, the same structures substituted 
symmetrically with two isomorphic chains or trees are also isocodal. The symmetry 
of the isocodal graphs representing these structures may be described by automor- 
phic mappings expressed by the following permutations of  the vertexes in Fig. 4: 

(1  k)(2 k+1) (3  k + 2 ) . . .  

(1 k)(2 k - 1 ) ( 3  k - 2 ) . - - .  

In a language more familiar to the chemists, the first permutation corresponds 
to the inversion of all atoms through the inversion center or to the rotation about 
a two-fold axis perpendicular to the common edge (type A) or bridge (type B), 
while the second permutat ion corresponds to the reflection in the plane perpen- 
dicular to the common edge or bridge (Fig. 3). 

The substituted structures of type A are no longer blocks but their origin can be 
traced back to their nonseparable ancestor. 

To conclude the discussion of its selectivity, it may be stated that the index 
I(LW) discriminates the tested acyclic structures equally well as molecular ID 
and better than all other graph-theoretical indexes defined until now. For the 
cyclic structures its discriminating power is lesser but still comparable to that of 
Blaban's J and Randi6's ID. The simplicity with which the index predicts isocodal 
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A B 

3 2 1 2 -- 2k--3 

, \ 
I 

\ / /  

k - 2  k--1 k + t  k +  'J 

3 2k - -3  

k--2 k + 2  

Fig. 4. (A) Nonseparable bicyclic graph consisting of two isomorphic cycles with k + I-  1 vertexes 
each. Common edges form a path of length/. (B) Separable bicyclic graph consisting of two isomorphic 
cycles with k - 1 vertexes each. A path consisting of l bridges connects the two cycles 

bicyclic structures is also worth mentioning from the graph-theoretical point of 
view. 

The values of I(LW) can be used for a quick if rather pragmatical test-of graph 
isomorphism. Since the index is not absolutely discriminating, the eventual 
non-isomorphism of isocodal graphs must be ascertained by other means; 
nevertheless, because of the excellent structural selectivity of I(LW), there is a 
high probability that isocodal graphs will be isomorphic also. By this method, 
we found recently five pairs of isomorphic graphs in the plotouts of a large 
collection of 427 graphs which were supposed to be all nonisomorphic. Correspon- 
dence with authors clarified this as a fault in the plotter routines. 

Apart from the selectivity, there is another important aspect of graph-theoretical 
descriptors: they can be used to order the structures according to the attributed 
numerical values. This ordering may or may not parallel the ordering of structures 
by their properties. In the following paragraphs we shall touch this vast subject 
only briefly to compare the order induced on some structural populations by 
I(LW) and several other indexes. 

In Table 3 the values of 6 different indexes for all heptane isomers are given. 
Two of the indexes not yet cited are also well known: the Wiener number W 
[24] and Bonchev's information on distances Io [25]. All values given in Table 
3 were calculated with the precision of at least 8 decimal places but only the first 
four (five for ID) numerals are shown. The I(LW) values in the table are the 
real values multiplied by 1000. Beside the values of indexes calculated for 9 
heptane isomers, the ordering of structures induced by the decreasing value of 
separate indexes is given in parenthesis. The ordering of structures by I(LW) is 
identical to that of ID and W, it parallels that of ID closely and that of 1X 
generally, and it is practically the inverse of the ordering by J. The number of 
walks is closely related to the distribution of distances in the graph - the more 
compact (branched, sterically hindered, e t c . . . )  is the structure, the lesser is its 
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Table 3. Ordering of 9 heptane isomers by index value for 6 different graph-theoretical indexes 

Structure I ( L W )  I D J Iv/( ID W 
x 1000 

90.92 (1) 233.5 (1) 2.447 (9) 3.414 (1) 12.834 (1) 56 (1) 

67.06 (2) 218.2 (2) 2.678 (8) 3.270 (4) 12.670 (2) 52 (2) 

59.31 (3) 210.5 (3) 2.832 (7) 3.308 (3) 12.660 (4) 50 (3) 

/ ~  52.28 (4) 203.5 (4) 2.992 (5) 3.346 (2) 12.669 (3) 48 (4, 5) 

/ ~  48.88 (5) 203.1 (5) 2.953 (6) 3.125 (6) 12.509 (5) 48 (4, 5) 

/ ~  41.58 (6) 195.6 (6) 3.144 (4) 3.181 (5) 12.505 (6) 46 (6, 7) 

/ / ~  39.09 (7) 195.1 (7) 3.154 (3) 3.061 (8) 12.449 (7) 46 (6, 7) 

//• 32.46 (8) 187.7 (8) 3.360 (2) 3.121 (7) 12.443 (8) 44 (8) 

/ / ~  26.23 (9) 179.9 (9) 3.541 (1) 2.943 (9) 12.293 (9) 42 (9) 

I(LW) value. All other indexes shown in the table are more or less directly 
related to distance distribution with the exception of 1g which is based on vertex 
degree so that the general good agreement in ordering is not surprising. The 
index I(LW) follows the rules, established by Bonchev and Trinajsti6 [25] for 
the quantification of molecular branching very well. A recent work on chemical 
ordering of molecules [26] gives identical ordering of heptane isomers which 
correlates well with several physico-chemical properties. 

An example of ordering of larger structural populations using I(LW) values is 
given in Table 4. All 75 decane isomers and all 250 mono- and bicyclic structures 
with 8 vertexes are ordered according to the attributed I(LW) value. Only the 
first and last 6 structures of each class are shown in the table. The ordering of 
decanes is "conventional", going from n-decane to 2,2,3,3,4-pentamethyl hexane. 
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Table 4. Ordering of 75 decane isomers and 250 mono- and bicyclic structures having 8 
vertexes by I(LW) value 

Mono- and bicyclic 
Decane isomers I(LW) x 1000 str. with 8 vertices I(LW) x 1000 

15.98 ( ~  31.25 

12.38 ~ 25.32 

11.09 ~ 22.53 

10.55 ~ 22.39 

10.34 ~ 20.45 

9.40 @ 20.03 

63 structures 238 structures 

~ ,~  2.29 ~ 2.63 

2.20 ~ 2.52 

2.26 
1.94 

1.90 - - ~  2.09 

1.87 + 1.97 

@ 1.82 

1.63 



Discrimination and ordering of chemical structures 377 

In the class of mono- and bicyclic structures the main parameter for ordering 
appears to be the number of cycles as this is the structural feature that increases 
the number of walks the most. Apart from this, the ordering follows the usual 
trend from the le~.st to the most sterically hindered structure. 

Concluding remarks 

The comparison of index I(LW) with other highly discriminating graph-theo- 
retical indexes is favourable. The calculation of  index values is straightforward 
and not demanding in computer time. The algorithms for the generation of values 
for large number of structures from their adjacency matrices are simple and 
efficient. Moreover, they can be implemented without too much effort in any 
chemical information system having access to structural data either in the form 
of adjacency matrices, connection tables, Wiswesser linear notation, etc. Based 
on an easily calculable graph invariant, the new index discriminates well similar 
nonisomorphic s t ructuresand is undoubtedly one of the three most structurally 
selective graph-theoretical indexes defined until now. In this presentation only 
homoatomic chemical structures were discussed but the possibilities to include 
heteroatoms in the scheme are under study. 

The possibility of  prediction of isocodal structures, described in the discsussion, 
removes in fact the degeneration of index values as the structures in question 
can be discriminated by other means. Of course extensive further study is needed 
to substantiate this conjecture for bicyclic systems and to generalize it to systems 
with higher number of cycles and substituents. 

Although the potential of the new index for the characterization of  molecular 
graphs in structure - -  properties correlation was not yet studied in detail, the 
preliminary trials of ordering the structures by index values are promising. 

Acknowledgement. Discussions with Professor Jure Zupan and Dr. Marjana Novi~ and the financial 
support of the Research Community of Slovenia are gratefully acknowledged. 
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